Month: February 2015

Quantum state transfer in disordered spin chains: How much engineering is reasonable? | Quant. Inf. Comm. (2015)

Posted on

Analia Zwick, Gonzalo A. Álvarez, Joachim Stolze, and Omar Osenda

Quant. Inf. Comput. 15, 582-600 (2015).

The transmission of quantum states through spin chains is an important element in the im- plementation of quantum information technologies. Speed and fidelity of transfer are the main objectives which have to be achieved by the devices even in the presence of imperfections which are unavoidable in any manufacturing process. To reach these goals, several kinds of spin chains have been suggested, which differ in the degree of fine-tuning, or engineering, of the system parameters. In this work we present a systematic study of two important classes of such chains. In one class only the spin couplings at the ends of the chain have to be adjusted to a value different from the bulk coupling constant, while in the other class every coupling has to have a specific value. We demonstrate that configurations from the two different classes may perform similarly when subjected to the same kind of disorder in spite of the large difference in the engineering effort necessary to prepare the system. We identify the system features responsible for these similarities and we perform a detailed study of the transfer fidelity as a function of chain length and disorder strength, yielding empirical scaling laws for the fidelity which are similar for all kinds of chain and all dis- order models. These results are helpful in identifying the optimal spin chain for a given quantum information transfer task. In particular, they help in judging whether it is worthwhile to engineer all couplings in the chain as compared to adjusting only the boundary couplings.

via [1306.1695] Quantum state transfer in disordered spin chains: How much engineering is reasonable?.

Comparison of the averaged state transfer fidelity for different quantum state transfer channels. The left hand side panels are boundary controlled spin-chain channels and the right hand side panels are fully engineered perfect state transfer channels. Two kinds of disorder are considered in the plot: Absolute disorder with a perturbation strength proportional to the maximum coupling strength of the spin-chain or relative disorder when the perturbation strength in each spin-spin coupling is relative to its optimal value. For the boundary controlled spin channels, both types of disorder are equivalent since the bulk of the chains contains homogeneous couplings, while for the fully engineered spin-channels they provide different effects on the transfer fidelity. The average is calculated over 1000 disorder realizations. The black contour lines belong to fidelities F = 0.99, 0.95, 0.9, 0.8, 0.7, respectively. The colored symbols show the crossovers between the different systems.
Comparison of the averaged state transfer fidelity for different quantum state transfer channels. The left hand side panels are boundary controlled spin-chain channels and the right hand side panels are fully engineered perfect state transfer channels. Two kinds of disorder are considered in the plot: Absolute disorder with a perturbation strength proportional to the maximum coupling strength of the spin-chain or relative disorder when the perturbation strength in each spin-spin coupling is relative to its optimal value. For the boundary controlled spin channels, both types of disorder are equivalent since the bulk of the chains contains homogeneous couplings, while for the fully engineered spin-channels they provide different effects on the transfer fidelity. The average is calculated over 1000 disorder realizations. The black contour lines belong to fidelities F = 0.99, 0.95, 0.9, 0.8, 0.7, respectively. The colored symbols show the crossovers between the different systems.
Advertisements