Physical sciences
Rev. Mod. Phys.:Protecting quantum information against environmental noise
Colloquium: Protecting quantum information against environmental noise
Dieter Suter and Gonzalo A. Álvarez
Rev. Mod. Phys. 88, 041001 (2016)
Published 10 October 2016
Quantum-mechanical systems retain their properties so long as the phase of quantum superpositions evolve stably over time. Contact with an environment can disrupt this phase evolution. But for environments that do not exchange energy with the quantum system, strategies exist where the controlled driving of the system can recover or maintain the quantum phase. This Colloquium surveys the host of techniques that are available to “refocus” the phase when disturbed by various forms of classical or quantum environment. While the first such techniques were developed long ago, ideas from quantum information theory have introduced new strategies for accomplishing this goal.
Source: Reviews of Modern Physics – Volume 88 Issue 4
Nat. Commun.: Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations
Gonzalo A. Álvarez, Christian O. Bretschneider, Ran Fischer, Paz London, Hisao Kanda, Shinobu Onoda, Junichi Isoya, David Gershoni & Lucio Frydman
Nature Communications 6, 8456 (2015). doi:10.1038/ncomms9456
Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-13C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron–nuclear spin manifold. 13C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing.
